Benchmarking the effectiveness of sequential pattern mining methods

نویسندگان

  • Hye-Chung Kum
  • Joong Hyuk Chang
  • Wei Wang
چکیده

Recently, there is an increasing interest in new intelligent mining methods to find more meaningful and compact results. In intelligent data mining research, accessing the quality and usefulness of the results from different mining methods is essential. However, there is no general benchmarking criteria to evaluate whether these new methods are indeed more effective compared to the traditional methods. Here we propose a novel benchmarking criteria that can systematically evaluate the effectiveness of any sequential pattern mining method under a variety of situations. The benchmark evaluates how well a mining method finds known common patterns in synthetic data. Such an evaluation provides a comprehensive understanding of the resulting patterns generated from any mining method empirically. In this paper, the criteria are applied to conduct a detailed comparison study of the support-based sequential pattern model with an approximate pattern model based on sequence alignment. The study suggests that the alignment model will give a good summary of the sequential data in the form of a set of common patterns in the data. In contrast, the support model generates massive amounts of frequent patterns with much redundancy. This suggests that the results of the support model require more post processing before it can be of actual use in real applications. 2006 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probabilistic Deterministic Classifier Based Sequential Pattern Mining to Evaluate Structural Pattern on Chemical Bonding

ISSN: 2347-8578 www.ijcstjournal.org Page 223 Probabilistic Deterministic Classifier Based Sequential Pattern Mining to Evaluate Structural Pattern on Chemical Bonding S.Sathya , N.Rajendran [2] Research Scholar , Bharathiar University, Coimbatore Principal ,Vivekanandha arts & science college,Sankiri,Salem(dt) India ABSTRACT Evaluating the structural patterns of chemical bonding involves ident...

متن کامل

Pushing Constraints to Generate Top-K Closed Sequential Graph Patterns

In this paper, the problem of finding sequential patterns from graph databases is investigated. Two serious issues dealt in this paper are efficiency and effectiveness of mining algorithm. A huge volume of sequential patterns has been generated out of which most of them are uninteresting. The users have to go through a large number of patterns to find interesting results. In order to improve th...

متن کامل

Mining Frequent Max and Closed Sequential Patterns

Although frequent sequential pattern mining has an important role in many data mining tasks, however, it often generates a large number of sequential patterns, which reduces its efficiency and effectiveness. For many applications mining all the frequent sequential patterns is not necessary, and mining frequent Max, or Closed sequential patterns will provide the same amount of information. Compa...

متن کامل

A Sequential Pattern Mining Method based on Sequential Interestingness

Sequential mining methods efficiently discover all frequent sequential patterns included in sequential data. These methods use the support, which is the previous criterion that satisfies the Apriori property, to evaluate the frequency. However, the discovered patterns do not always correspond to the interests of analysts, because the patterns are common and the analysts cannot get new knowledge...

متن کامل

Discovering Active and Profitable Patterns with Rfm (recency, Frequency and Monetary) Sequential Pattern Mining–a Constraint Based Approach

Sequential pattern mining is an extension of association rule mining that discovers time-related behaviors in sequence database. It extends association by adding time to the transactions. The problem of finding association rules concern with intratransaction patterns whereas that of sequential pattern mining concerns with inter-transaction patterns. Generalized Sequential Pattern (GSP) mining a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Data Knowl. Eng.

دوره 60  شماره 

صفحات  -

تاریخ انتشار 2007